3.5.12 \(\int \frac {(a+b \sec (c+d x))^3 (A+B \sec (c+d x))}{\sec ^{\frac {7}{2}}(c+d x)} \, dx\) [412]

Optimal. Leaf size=245 \[ \frac {2 \left (9 a^2 A b+5 A b^3+3 a^3 B+15 a b^2 B\right ) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {2 \left (5 a^3 A+21 a A b^2+21 a^2 b B+21 b^3 B\right ) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{21 d}+\frac {2 a^2 (11 A b+7 a B) \sin (c+d x)}{35 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 a \left (5 a^2 A+18 A b^2+21 a b B\right ) \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}+\frac {2 a A (a+b \sec (c+d x))^2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)} \]

[Out]

2/35*a^2*(11*A*b+7*B*a)*sin(d*x+c)/d/sec(d*x+c)^(3/2)+2/7*a*A*(a+b*sec(d*x+c))^2*sin(d*x+c)/d/sec(d*x+c)^(5/2)
+2/21*a*(5*A*a^2+18*A*b^2+21*B*a*b)*sin(d*x+c)/d/sec(d*x+c)^(1/2)+2/5*(9*A*a^2*b+5*A*b^3+3*B*a^3+15*B*a*b^2)*(
cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+
c)^(1/2)/d+2/21*(5*A*a^3+21*A*a*b^2+21*B*a^2*b+21*B*b^3)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*Ellip
ticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d

________________________________________________________________________________________

Rubi [A]
time = 0.31, antiderivative size = 245, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.212, Rules used = {4110, 4159, 4132, 3856, 2719, 4130, 2720} \begin {gather*} \frac {2 a \left (5 a^2 A+21 a b B+18 A b^2\right ) \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}+\frac {2 a^2 (7 a B+11 A b) \sin (c+d x)}{35 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 \left (5 a^3 A+21 a^2 b B+21 a A b^2+21 b^3 B\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{21 d}+\frac {2 \left (3 a^3 B+9 a^2 A b+15 a b^2 B+5 A b^3\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 a A \sin (c+d x) (a+b \sec (c+d x))^2}{7 d \sec ^{\frac {5}{2}}(c+d x)} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((a + b*Sec[c + d*x])^3*(A + B*Sec[c + d*x]))/Sec[c + d*x]^(7/2),x]

[Out]

(2*(9*a^2*A*b + 5*A*b^3 + 3*a^3*B + 15*a*b^2*B)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]
])/(5*d) + (2*(5*a^3*A + 21*a*A*b^2 + 21*a^2*b*B + 21*b^3*B)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt
[Sec[c + d*x]])/(21*d) + (2*a^2*(11*A*b + 7*a*B)*Sin[c + d*x])/(35*d*Sec[c + d*x]^(3/2)) + (2*a*(5*a^2*A + 18*
A*b^2 + 21*a*b*B)*Sin[c + d*x])/(21*d*Sqrt[Sec[c + d*x]]) + (2*a*A*(a + b*Sec[c + d*x])^2*Sin[c + d*x])/(7*d*S
ec[c + d*x]^(5/2))

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 4110

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[a*A*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*((d*Csc[e + f*x])^n/(f*n)), x]
+ Dist[1/(d*n), Int[(a + b*Csc[e + f*x])^(m - 2)*(d*Csc[e + f*x])^(n + 1)*Simp[a*(a*B*n - A*b*(m - n - 1)) + (
2*a*b*B*n + A*(b^2*n + a^2*(1 + n)))*Csc[e + f*x] + b*(b*B*n + a*A*(m + n))*Csc[e + f*x]^2, x], x], x] /; Free
Q[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0] && GtQ[m, 1] && LeQ[n, -1]

Rule 4130

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> Simp[A*Cot[e
+ f*x]*((b*Csc[e + f*x])^m/(f*m)), x] + Dist[(C*m + A*(m + 1))/(b^2*m), Int[(b*Csc[e + f*x])^(m + 2), x], x] /
; FreeQ[{b, e, f, A, C}, x] && NeQ[C*m + A*(m + 1), 0] && LeQ[m, -1]

Rule 4132

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(
C_.)), x_Symbol] :> Dist[B/b, Int[(b*Csc[e + f*x])^(m + 1), x], x] + Int[(b*Csc[e + f*x])^m*(A + C*Csc[e + f*x
]^2), x] /; FreeQ[{b, e, f, A, B, C, m}, x]

Rule 4159

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[A*a*Cot[e + f*x]*((d*Csc[e + f*x])^n/(f*n)), x]
 + Dist[1/(d*n), Int[(d*Csc[e + f*x])^(n + 1)*Simp[n*(B*a + A*b) + (n*(a*C + B*b) + A*a*(n + 1))*Csc[e + f*x]
+ b*C*n*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C}, x] && LtQ[n, -1]

Rubi steps

\begin {align*} \int \frac {(a+b \sec (c+d x))^3 (A+B \sec (c+d x))}{\sec ^{\frac {7}{2}}(c+d x)} \, dx &=\frac {2 a A (a+b \sec (c+d x))^2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}-\frac {2}{7} \int \frac {(a+b \sec (c+d x)) \left (-\frac {1}{2} a (11 A b+7 a B)-\frac {1}{2} \left (5 a^2 A+7 A b^2+14 a b B\right ) \sec (c+d x)-\frac {1}{2} b (a A+7 b B) \sec ^2(c+d x)\right )}{\sec ^{\frac {5}{2}}(c+d x)} \, dx\\ &=\frac {2 a^2 (11 A b+7 a B) \sin (c+d x)}{35 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 a A (a+b \sec (c+d x))^2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {4}{35} \int \frac {\frac {5}{4} a \left (5 a^2 A+18 A b^2+21 a b B\right )+\frac {7}{4} \left (9 a^2 A b+5 A b^3+3 a^3 B+15 a b^2 B\right ) \sec (c+d x)+\frac {5}{4} b^2 (a A+7 b B) \sec ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x)} \, dx\\ &=\frac {2 a^2 (11 A b+7 a B) \sin (c+d x)}{35 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 a A (a+b \sec (c+d x))^2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {4}{35} \int \frac {\frac {5}{4} a \left (5 a^2 A+18 A b^2+21 a b B\right )+\frac {5}{4} b^2 (a A+7 b B) \sec ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x)} \, dx+\frac {1}{5} \left (9 a^2 A b+5 A b^3+3 a^3 B+15 a b^2 B\right ) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx\\ &=\frac {2 a^2 (11 A b+7 a B) \sin (c+d x)}{35 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 a \left (5 a^2 A+18 A b^2+21 a b B\right ) \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}+\frac {2 a A (a+b \sec (c+d x))^2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {1}{21} \left (5 a^3 A+21 a A b^2+21 a^2 b B+21 b^3 B\right ) \int \sqrt {\sec (c+d x)} \, dx+\frac {1}{5} \left (\left (9 a^2 A b+5 A b^3+3 a^3 B+15 a b^2 B\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx\\ &=\frac {2 \left (9 a^2 A b+5 A b^3+3 a^3 B+15 a b^2 B\right ) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {2 a^2 (11 A b+7 a B) \sin (c+d x)}{35 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 a \left (5 a^2 A+18 A b^2+21 a b B\right ) \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}+\frac {2 a A (a+b \sec (c+d x))^2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {1}{21} \left (\left (5 a^3 A+21 a A b^2+21 a^2 b B+21 b^3 B\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx\\ &=\frac {2 \left (9 a^2 A b+5 A b^3+3 a^3 B+15 a b^2 B\right ) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {2 \left (5 a^3 A+21 a A b^2+21 a^2 b B+21 b^3 B\right ) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{21 d}+\frac {2 a^2 (11 A b+7 a B) \sin (c+d x)}{35 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 a \left (5 a^2 A+18 A b^2+21 a b B\right ) \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}+\frac {2 a A (a+b \sec (c+d x))^2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 1.39, size = 180, normalized size = 0.73 \begin {gather*} \frac {\sqrt {\sec (c+d x)} \left (84 \left (9 a^2 A b+5 A b^3+3 a^3 B+15 a b^2 B\right ) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+20 \left (5 a^3 A+21 a A b^2+21 a^2 b B+21 b^3 B\right ) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )+a \left (42 a (3 A b+a B) \cos (c+d x)+5 \left (13 a^2 A+42 A b^2+42 a b B+3 a^2 A \cos (2 (c+d x))\right )\right ) \sin (2 (c+d x))\right )}{210 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[((a + b*Sec[c + d*x])^3*(A + B*Sec[c + d*x]))/Sec[c + d*x]^(7/2),x]

[Out]

(Sqrt[Sec[c + d*x]]*(84*(9*a^2*A*b + 5*A*b^3 + 3*a^3*B + 15*a*b^2*B)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2,
 2] + 20*(5*a^3*A + 21*a*A*b^2 + 21*a^2*b*B + 21*b^3*B)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2] + a*(42*a
*(3*A*b + a*B)*Cos[c + d*x] + 5*(13*a^2*A + 42*A*b^2 + 42*a*b*B + 3*a^2*A*Cos[2*(c + d*x)]))*Sin[2*(c + d*x)])
)/(210*d)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(663\) vs. \(2(273)=546\).
time = 1.90, size = 664, normalized size = 2.71

method result size
default \(-\frac {2 \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (240 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a^{3}+\left (-360 A \,a^{3}-504 A \,a^{2} b -168 a^{3} B \right ) \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (280 A \,a^{3}+504 A \,a^{2} b +420 A \,b^{2} a +168 a^{3} B +420 B b \,a^{2}\right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (-80 A \,a^{3}-126 A \,a^{2} b -210 A \,b^{2} a -42 a^{3} B -210 B b \,a^{2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+25 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, a^{3}+105 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, a \,b^{2}-189 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, a^{2} b -105 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, b^{3}+105 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, a^{2} b +105 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, b^{3}-63 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, a^{3}-315 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, a \,b^{2}\right )}{105 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(664\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*sec(d*x+c))^3*(A+B*sec(d*x+c))/sec(d*x+c)^(7/2),x,method=_RETURNVERBOSE)

[Out]

-2/105*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(240*A*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^8*
a^3+(-360*A*a^3-504*A*a^2*b-168*B*a^3)*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)+(280*A*a^3+504*A*a^2*b+420*A*a*
b^2+168*B*a^3+420*B*a^2*b)*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+(-80*A*a^3-126*A*a^2*b-210*A*a*b^2-42*B*a^3
-210*B*a^2*b)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+25*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+
1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*a^3+105*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+
1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*a*b^2-189*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*
x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*a^2*b-105*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*
d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*b^3+105*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*
d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*a^2*b+105*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/
2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*b^3-63*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2
*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*a^3-315*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2
*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*a*b^2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1
/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))^3*(A+B*sec(d*x+c))/sec(d*x+c)^(7/2),x, algorithm="maxima")

[Out]

integrate((B*sec(d*x + c) + A)*(b*sec(d*x + c) + a)^3/sec(d*x + c)^(7/2), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.67, size = 295, normalized size = 1.20 \begin {gather*} -\frac {5 \, \sqrt {2} {\left (5 i \, A a^{3} + 21 i \, B a^{2} b + 21 i \, A a b^{2} + 21 i \, B b^{3}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 5 \, \sqrt {2} {\left (-5 i \, A a^{3} - 21 i \, B a^{2} b - 21 i \, A a b^{2} - 21 i \, B b^{3}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 21 \, \sqrt {2} {\left (-3 i \, B a^{3} - 9 i \, A a^{2} b - 15 i \, B a b^{2} - 5 i \, A b^{3}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 21 \, \sqrt {2} {\left (3 i \, B a^{3} + 9 i \, A a^{2} b + 15 i \, B a b^{2} + 5 i \, A b^{3}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - \frac {2 \, {\left (15 \, A a^{3} \cos \left (d x + c\right )^{3} + 21 \, {\left (B a^{3} + 3 \, A a^{2} b\right )} \cos \left (d x + c\right )^{2} + 5 \, {\left (5 \, A a^{3} + 21 \, B a^{2} b + 21 \, A a b^{2}\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{105 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))^3*(A+B*sec(d*x+c))/sec(d*x+c)^(7/2),x, algorithm="fricas")

[Out]

-1/105*(5*sqrt(2)*(5*I*A*a^3 + 21*I*B*a^2*b + 21*I*A*a*b^2 + 21*I*B*b^3)*weierstrassPInverse(-4, 0, cos(d*x +
c) + I*sin(d*x + c)) + 5*sqrt(2)*(-5*I*A*a^3 - 21*I*B*a^2*b - 21*I*A*a*b^2 - 21*I*B*b^3)*weierstrassPInverse(-
4, 0, cos(d*x + c) - I*sin(d*x + c)) + 21*sqrt(2)*(-3*I*B*a^3 - 9*I*A*a^2*b - 15*I*B*a*b^2 - 5*I*A*b^3)*weiers
trassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + 21*sqrt(2)*(3*I*B*a^3 + 9*I*A*a^
2*b + 15*I*B*a*b^2 + 5*I*A*b^3)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c
))) - 2*(15*A*a^3*cos(d*x + c)^3 + 21*(B*a^3 + 3*A*a^2*b)*cos(d*x + c)^2 + 5*(5*A*a^3 + 21*B*a^2*b + 21*A*a*b^
2)*cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/d

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (A + B \sec {\left (c + d x \right )}\right ) \left (a + b \sec {\left (c + d x \right )}\right )^{3}}{\sec ^{\frac {7}{2}}{\left (c + d x \right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))**3*(A+B*sec(d*x+c))/sec(d*x+c)**(7/2),x)

[Out]

Integral((A + B*sec(c + d*x))*(a + b*sec(c + d*x))**3/sec(c + d*x)**(7/2), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))^3*(A+B*sec(d*x+c))/sec(d*x+c)^(7/2),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)*(b*sec(d*x + c) + a)^3/sec(d*x + c)^(7/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {\left (A+\frac {B}{\cos \left (c+d\,x\right )}\right )\,{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^3}{{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{7/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((A + B/cos(c + d*x))*(a + b/cos(c + d*x))^3)/(1/cos(c + d*x))^(7/2),x)

[Out]

int(((A + B/cos(c + d*x))*(a + b/cos(c + d*x))^3)/(1/cos(c + d*x))^(7/2), x)

________________________________________________________________________________________